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ABSTRACT 

An analytical method of determining the radial distribu­
tion of the density dependent properties in an axisymmetric 
gas stream is presented. This method is used to invert the 
integrated lateral intensity distribution of properties which 
are normally obtained with experimental techniques to the 
desired local radial variation. 

The equation of lateral distribution is derived, and the 
analytical solution for the radial distribution equation is 
shown. A numerical solution ideally suited to high speed 
digital computers is presented. A particular application, 
determination of the radial distribution of spectral radiant 
emission from a plasma jet, is described; a discussion of 
the shapes of the measured and inverted distribution is also 
included. 
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INTRODUCTION 

The density dependent properties of axisymmetric gas streams ar­
range themselves in iso-circles about the axis of the gas stream and so 
may be considered as functions of the radius. Any of the density depend­
ent properties, such as light intensity, whether emitted or absorbed, can 
readily be measured laterally by placing the measuring device at right 
angles to the gas stream. The resulting measurement is then an integra­
tion across all the iso-circles encountered by a line passing from the 
measuring device and perpendicular to the stream axis. These lateral 
measurements provide a distribution F(x) which is a function of the 
distance from the stream centerline and not a function of the radius r. 
Therefore, since a radial distribution is of major interest, some method 
must be devised to invert the lateral measurements to functions of the 
radius. 

The method of lateral to radial inversion consists, essentially, of 
deriving an equation for the lateral measurement as a function of the un­
known property I(r), the radius r, and the parameter x, where x is the 
horizontal distance from the stream centerline. The derived equation 
can then be inverted analytically to achieve a solution for the unknown 
property I(r) as a function of the horizontal distance x with r as a param­
eter. The inverted solution is then an integral equation of such form that 
an analytical solution is not readily available. Therefore, a numerical 
solution is resorted to for the integration. 

The problem of radial inversion has been considered previously (Refs. 
1 and 2) and methods presented for its solution. However, these methods 
tend to avoid the lateral to radial inversion integral or to replace the in­
verted equation by a summation. 

In this report a complete derivation of the equation expressing the 
lateral distribution is presented. The solution of the lateral distribu­
tion equation for the radial distribution is also presented, along with a 
method of numerical solution for the radial distribution that lends itself 
to methods applicable to a digital computer. In the numerical solution, 
the replacement of the inverted expression by a numerical series, as 
reported by other investigators, is avoided. Instead, an appropriate 
change of variable is made so that the integral can be replaced by the 
area under a curve determined from experimental data. This area 
represents the solution and can be found very accurately by many 
different methods (Ref. 3). 

Manuscript released by authors November 1960. 
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The method of radial inversion presented in this report is quite 
general and is applicable to any density dependent property of an axisym­
metric gas stream. The lateral measurements can be made with schlieren 
optical systems, interferometers, or shadowgraphs,> as well as with spec­
trographic techniques. 

Fon purposes of illustration the lateral measurement of spectral light 
intensity of an axisymmetric plasma stream is inverted to give the intensity 
as a function of the radius. The data are taken from a simple d-c arc­
excited plasma jet using spectographic techniques (Ref. 4). 

DERIVATION OF THE LATERAL EQUATION 

The lateral measurement of a property e. g., light energy F(x) in an 
axisymmetric plasma stream, can be represented schematically as in 
Fig. 1 where F(x) represents the column of light energy of unit depth, 
dx width, and length from - ro to + <». Therefore, since F(x) is the sum 
of all the elements I(r) dy, F(x) can be expressed as 

From symmetry 

and from geometry 

+00 
F (x) = f I(r) dy 

-00 

+00 
F (x) 2 f I(r) dy 

o 

( r
2 

y = 2) ~ - x 

r dr dy = 
( 2 2)~ 

r - x 

Now, substitution in Eq. 1 yields 

( 1) 

(2) 

assuming that there are no external contributions of light energy out­
side the region ± R. Equation (2) is a form of Abel's Integral Equation 
(Ref. 5) and can be readily inverted analytically for I(r). The inversion 
for I(r) is shown in detail in Appendix A and yields 

R 

I (r) = ~ J F' (x) dx 

( 2 2) ~ 
X - r 

(3) 
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METHOD OF EVALUATING THE RADIAL EQUATION 

A solution to the radial equation, Eq. (3), is not immediately obvious 
because of the nonavailability of an analytical expression for F' (x). Also, 
many values of r must be used to determine a true radial distribution. 
Moreover it is desirable to use a method of solution for Eq. (3) that is 
readily adaptable to digital computers. 

Consider Eq. (3) 
R 

I (r) 1 J -----"F_'---"(x=)-=d=x~_ 
7T r (2 2)1~ 

X - r 

Put in the form 
R 

I (r) = 1 f 
7T r x 

F '(x) 

and with the substitution 

u = 

du x dx 

( 2 2) ~ 
X - r 

Eq. (3) becomes 
R 

I (r) = l J F' (x) du 
7T 0 X 

which can be readily integrated by plotting F' (x) / x vs u and measuring the 
area under the resulting curve. 

The lack of an analytical expression for F(x) precludes the use of any 
method other than a numerical method for determining F' (x) / x. However, 
if care is used in selecting a numerical method the error encountered will 
be negligible (Ref. 3). 

Consider the lateral distribution data F(xo), F(xl) ... F(xn); then the 
value of the derivative at each x can be calculated by 

F'(xn) = _1_ [L1F(X_J ) + L1F(x+ 1 ) ] 

~ x 2 (4) 

where 

and 
L1x Xn + 1 - Xn 

if x is given in equal increments. 
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To calculate I(r), first consider 

(Y2 + Yl) + ... 

Un - Un _ 1 ( ) 
2 Yn + Yn - 1 (5) 

This equation is derived from Fig. 2 where the shaded areas are con­
sidered to be triangles. The simplicity of the formula is necessary since 
a more accurate formula (e. g. the Gauss formula for unequal intervals -
Ref. 3) would present calculations that are nearly prohibitive in their 
complexity. This simplicity of Eq. 5 makes it quite applicable to digital 
computers; the fact that the intervals on the abcissa do not have to be 
equal makes it quite versatile. The only requirement is that the values 
of .6.u be kept small. 

EXAMPLE PROBLEM 

To illustrate the method of radial inversion presented in this 
report, an analytical function that lends itself to rapid solution is used 
to generate sample data. Thus, a check is provided on the method of 
solution, and any error becomes apparent. 

To generate data the expression F (x) = e-x 2 is used. When this 
expression is substituted in Eq. (3) 

R _x2 

I(r) = l f -2 x e dx 
1T r (2 2)~ 

X - r 

(6) 

The substitution of four values of r into Eq. (6) results in the values 
given in column two of Table 1. The third column represents values com­
puted by the method presented in this report. 

TABLE 1 

Value of 
Radius, Exact Value, Numerical Solution, Error, 

r/R I(r) In(r) e, (%) 

0.00 0.56 0.55 1. 85 
0.34 0.21 0.20 1. 85 
0.67 0.01 0.01 0.00 
1. 00 0.00 0.00 0.00 
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To compute the values in column three, the numerical formula for 
F' (x) (Eq. 4) is first applied. The the computation of F' (x) / x for each 
x gives the values of the ordinates for the area curve. If the equation 

u = (x 2 - r2) 'ii • is applied for a particular r, each x yields the values 
on the abcissa of the area curve (Fig. 2). The ah::a under the resulting 
curve is determined using Eq. (5) and. after it is divided by 1f, gives I(r). 

Column four shows the error in percent for the various solutions. 
The reader is referred to Fig. 3 for a graph of the complete solution. 
The superimposed dotted curve is the solution by the method presented 
in this report. The greatest deviation of the dotted curve from the actual 
solution is of the order of 1. 85 percent. 

RESULTS AND DISCUSSION 

EXPLANATION OF CURVE SHAPES 

The principal application of the method presented in this report has 
been the radial inversion of the lateral integrated spectral intensity of an 
Argon plasma jet. The plasma stream was an axisymmetric jet about 
7 mm in diameter and about 25-mm long (Ref. 4). The measurements oof 
intensity were made using a direct recording spectrometer set at 4195A. 
At this particular wave length only continuous radiation is present. 

Several sets of experimental data obtained at different planes of 
measurement are shown in Fig. 4. After the radial inversion was per­
formed on these data, the result was the I(r) vs r plots of Fig. 5. It 
should be noted that, as the plane of measurement is moved, there is a 
definite shift in the location of the peak value of the I(r) curves. There­
fore, since the data curves change shape radically as this measurement 
plane is moved, it is assumed that the movement of the peak of the I(r) 
curve is directly related to the shape of the data curve. Figure 6 shows 
the peak values of each I(r) curve as a function of the area under the cor­
responding data curve. 

The sample curves of Fig. 7 were generated to illustrate the shift 
of peak values, and the radial inversion' was performed on each to 
obtain the solutions of Fig. 8. Note how the peaks of the curves uniformly 
shift toward r ;:: 0 as the area under the corresponding data curve decreases. 
To explain this shift of peak value, consider Fig. 9. Here a cross section 
of the gas stream is represented, with superimposed profiles of the lateral 
intensity for various planes of measurement (curves 1, 2, 3). If the section 
of measurement of width ~x (shaded area) moves to the right, the section 
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rapidly decreases in length. However, if at the same time the lateral 
profile remains flat (curve number 1 on Fig. 9). then the peak occurs off­
center. This is obvious if one considers that although the area element 
of intensity has decreased in size, the lateral profile of measurement has 
remained relatively constant, an indication that the intensity of some 
radial point [say point (A) on Fig. 9] is greater than a point at the geo­
metrical center. 

CONCLUDING REMARKS 

The method of calculating the radial distribution of the density 
dependent properties in an axisymmetric gas stream presented in this 
report is quite general. It has application to any lateral distribution of 
data that is obtained from external observations. Thus the method veri­
fies that set forth by Brinkman (page 401 of Ref. 6) and is in close agree­
ment with the results obtained by other investigators (Refs. 1 and 2). 

To illustrate another use for the method of radial inversion. consider, 
for example, Fig. 10, which is a photograph of a plasma exhausting to low 
pressure with a probe ins'erted in the flame. (Calculations using shock 
wave angle measurements indicated a Mach number on the order of 2.8. ) 
The structure of the shock wave cannot be observed laterally since it is 
axisymmetric. However, if the negative of the photograph is analyzed on 
a densitometer, a lateral distribution of the density dependent properties 
is obtained (Fig. 11 a) . When the method described in this report is applied, 
the data yield the radial result of Fig. 11 b. The boundaries of the shock 
wave are clearly defined as a function of the radius. Therefore, it would 
be quite simple to completely define the boundaries of an axisymmetric 
shock wave using the method of radial inversion. 

Obviously the method is also applicable to data taken by schlieren 
optical systems. The only stipulations that must be imposed on the method 
are that the gas stream be axisymmetric and that the desired property be 
density dependent. 

The method of radial inversion described in this report has been pro­
grammed for the Royal McBee LGP-30 digital computer. It requires 
about two hours to solve the problem for inputs of about 30 values of 
radius in a floating decimal point interpretive routine. A machine lan­
guage program would reduce computer running time by a factor of at 
least one-third. 
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APPENDIX A 

SOLUTION FOR THE RADIAL EQUATION 

The lateral equation of the density dependent properties in an axisym­
metric gas stream is a form of the well known Abel Integral Equation. 
Methods of solution of this equation for the radial distribution are given 
in many references I (e. g. Ref. 7). However. for purposes of simplicity 
the following algebraic solution is presented. 

If both sides of the lateral equation (Eq. 2) 
f! 

F (x) 2 J I (r) rdr 

x (r2 _ x 2) 'ii (A1) 

are multiplied by x dx 
(x 2 _ t 2) 'ii 

integrated over the limits t to R the result 

is 

(A2) 

At this point the order of integration of the right hand member of Eq. A2 
can be changed if the limits of integration are modified accordingly. To 
modify the limits of integration the bounds of integration are first con­
structed graphically as in Fig. Al. 

The outer limits of the. right hand member of Eq. (Ai) are from 
x = t to x = R and are represented by the dotted lines on Fig. A1. The 
inner limits are from r = x to r = R. and these are represented by solid 
lines. The bounds of integration are defined by the shaded area. Invert­
ing the order of integration of Eq. A2 and integrating over the same 
shaded a!,ea~ 

f x F (x) 1 dx "" f f . ~ dx 1 2 r I (r) dr . R R[ r ] 

t (x2_t2)~ t t. (l_X2)~(x2_t2)~ 
(A3) 

Where the modified limits are from x = t (the dotted line) to the solid 
line x = r. The limits for the integral with respect to r are from r = t to 
r = R. This obviously is the same shaded area that was previously used 
so the value of the right hand member of Eq. (A2) is unchanged. 

Consider now the inner integral of the right hand member of Eq. A3 
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Completing the denominator results in 

2f' ~ ______ ~x~dx~ ____________ __ 

t [ (r 2 _ t 2)2 _ [2 x 2 _ (r 2 + t 2 )] ~ 'h 

which, when the substitution 

d¢ 4xdx 

± ; 

Equation (A3) now becomes 

f
t

R 
x F (x) dx "" ± TT fR r I(r) dr (A4) 

(X2_t2)'h t 

Differentiating both sides with respect to t and then rearranging yields 
R 

tl(t) = ± L _d_ f x F(x} dx (A5) 
TT dt t (x2 _ t2)'h 

The differentiation of the right hand member of Eq. (A5) can now be per­
formed. One method is to first integrate by parts. 
Setting 

u .,. F (x) 

du .,. F' (x) dx 

results in 

dv .,. 

v .,. 

x dx 

(x 2 _ t 2 )'h 

(x 2 _ t 2 )'h 

R 

t I(t) .,. ! t [F (x)(x 2 - t 2
) 'h ] I -fR (x 2 - t 2 ) 'h F ' (x) dx 

t t 

R 
t I(t) .,. ± 1 f -;;t 

and dividing through by t 
R 

t F ' (x) dx 

(x 2 _ t 2 )'h 

I(t) "" + L f F ' (x) dx 
- TT t (X2_t2)'h 

If t is set equal to r J this equation becomes 
R 

I(r) -= L 1 
TT r 

(A6) 

which is the radial equation expressing the intensity as a function of radius. 
The positive sign is chosen in that a negative value of intensity is absurd. 
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Fig, lA Graph of the X, r Plane for Bounds of Integration 
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y 

-+------------------~~----_4--4_~------~--~x 

dx 

t 
F (X) 

Fig. 1 Cross Section of Axisymmetric Gas Stream 
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Fig.2 Plot of F '(x)/x versus u for Determining Area under the Curve 
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Fig. 9 Superimposed Lateral Intensity Distribution on Cross Section of Plasma Flame 
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